Induksi Matematika-Buktikan bahwa untuk setiap € B berlaku 1³ + 2³ + 3³ ++ n³ = [½ n(n + 1)]² . PEMBAHASAN : Buktikan untuk n = 1 adalah benar !
ENMahasiswa/Alumni Institut Teknologi Sepuluh Nopember06 Juli 2022 2007Jawaban benar bahwa 1 + 3 + 5 + ... + 2n - 1 = n² Berlaku untuk setiap bilangan asli. Langkah-langkah pembuktian dengan induksi matematika • buktikan benar untuk n = 1 • asumsikan benar untuk n = k buktikan benar untuk n = k+1 • Untuk n = 1 1 = 1² 1 = 1 Jadi benar untuk n = 1 • Asumsikan benar untuk n = k, maka 1 + 3 + 5 + ... + 2k - 1 = k² Akan dibuktikan benar untuk n = k + 1 1 + 3 + 5 + ... + 2k - 1 + 2k+1-1 = k+1² k² + 2k+1 - 1 = k+1² k² + 2k + 2 - 1 = k+1² k² + 2k + 1 = k+1² k+1k+1 = k+1² k+1² = k+1² Jadi terbukti benar untuk n = k + 1 Dengan demikian benar bahwa 1 + 3 + 5 + ... + 2n - 1 = n² Berlaku untuk setiap bilangan akses pembahasan gratismu habisDapatkan akses pembahasan sepuasnya tanpa batas dan bebas iklan!
Teorema3.1. Misalkan S himpunan bagian dari N yang mempunyai sifat-sifat berikut (i) 1 S (ii) k S k + 1 S. Maka S = N. Bukti. Bila P(n) suatu pernyataan tentang n bilangan asli maka P(n) dapat bernilai benar pada beberapa kasus atau salah pada kasus lainnya. Diperhatikan P(n) : bahwa n2 > 2n hanya benar untuk P(2), P(3), P(4) tetapi salah

Asumsikanbahwa n=(k) benar, yaitu 1 + 3 + 5 +7 ++ 2(k)-1 = k 2 1 + 3 + 5 +7 ++ (2k-1) = k 2 Langkah Ketiga Buktikan bahwa n=(k+1) adalah benar k 2 + 2k + 1 = (k+1) 2 (k+1) 2 = (k+1) 2 maka persamaan di atas terbukti Contoh 3. Buktikan 1 + 3 + 5 + + (2n − 1) = n 2 benar, untuk setiap n bilangan asli. Jawab : Langkah Pertama

Untuksetiap n bilangan asli, buktikan bahwa 1 + 3 + 5 + ..+ (2n-1) =n^2. Pernyataan Majemuk; Logika Matematika; ALJABAR; Matematika; Share. Cek video lainnya. Sukses nggak pernah instan. Latihan topik lain, yuk! Matematika; Fisika; Kimia; 12. SMAPeluang Wajib; Kekongruen dan Kesebangunan; Statistika Inferensia;
1+ 3 + 5 + + (2n - 1) = n2 adalah benar (hipotesis induksi) [catatlah bahwa bilangan ganjil positif ke-n adalah (2n - 1)]. Kita harus memperlihatkan bahwa p(n +1) juga benar, yaitu
Perhatikancontoh soal induksi matematika berikut ini. Tunjukkan bahwa 1+2+3++n=½n (n+1) untuk semua n bilangan asli. Pembahasan: Misalkan P (n) adalah pernyataan bahwa 1+ 2+ 3+ + n/2 n (n+1). Tujuan kita adalah menunjukkan bahwa pernyataan P (n) tersebut benar untuk semua n bilangan asli. Langkah awal: Kita harus menunjukkan bahwa P (1 Q Jumlah n bilangan ganjil pertama dapat dinyatakan sebagai berikut: 1 + 3 + 5 + 7 ++ (2n − 1) = n 2. Untuk membuktikan kebenaran pernyataan tersebut dengan induksi matematika, maka diperlukan pemisalan/asumsi langkah ke tiga yaitu 0SQSF7a.
  • zsaw8idrff.pages.dev/233
  • zsaw8idrff.pages.dev/156
  • zsaw8idrff.pages.dev/248
  • zsaw8idrff.pages.dev/259
  • zsaw8idrff.pages.dev/102
  • zsaw8idrff.pages.dev/21
  • zsaw8idrff.pages.dev/95
  • zsaw8idrff.pages.dev/291
  • zsaw8idrff.pages.dev/194
  • buktikan bahwa 1 3 5 2n 1 n2